PROJECT TITLE

CODE & STANDARD

GENERAL NOTES

Solar photovoltaic system to be installed on residential structure.

This project has been designed in compliance with the CBC Section 1609 to withstand a minimum 65 MPH wind load.

The house is ______ story(ies) tall.

The rafters are ______ inches on center.

This system will not be interconnected until approval from the local jurisdiction and the utility is obtained.

When a storage battery is provided, this system shall be an utility interactive system with listed storage batteries per CBC Article 706, and CBC Section 6307 requirements. Stationary storage battery systems shall comply CFC, and making capacities not exceeding the values shown in Table 680.1 2016 CFC.

The solar photovoltaic installation shall not obstruct any plumbing, mechanical or building roof vents.

If the existing main service panel does not have a verifiable grounding electrode, it is the contractor's responsibility to install a supplemental grounding electrode.

Each module will be grounded using the supplied connections points identified on the module and the manufacturer's installation instructions.

A ladder shall be in place for inspection in compliance with Cal-OSHA regulations.

Proper access and working clearance will be provided as per Section 110.26 CEC.

This project has been designed in compliance with the City of San Diego Prop O & FAA requirements.

SCOPE OF WORK:

SHEET INDEX:

As the homeowner of the subject project, I certify that I am requesting to install the solar photovoltaic system shown on these plans.

Home Owner Signature Home Owner’s Name (Printed)
NOTE: IDENTIFY THE RIDGE, HIP AND VALLEY ON THE PLAN

PROPERTY LINE

ROOF, INDICATE IF EXISTING OR NEW

PLUMBING VENT, SEE LOCATION ON SITE PLAN FIELD VERIFIED PRIOR TO ANY INSTALLATION

REFER TO PV-4 FOR ROOF FIRE PATHWAY DIMENSION

INVERTER

PLUMBING VENT, 4" MINIMUM DISTANCE TO SOLAR PANEL. REQUIRED TO OFFSET. PLUMBING PERMIT WILL BE REQUIRED

SOLAR PANELS, SEE ENLARGED PARTIAL SIDE PLAN SHEET PV-2

METER, INDICATE IF NEW OR EXISTING

ROOF ACCESS

RENDER VENT

Solar panels, see enlarged partial side plan. Sheet PV-2

REFER TO PV-4.1 FOR EMERGENCY ESCAPE OPENING

FOR CONNECTION TO STRUCTURE SEE DETAIL 2 SHEET PV-2

NOTE: INDICATE PERCENTAGE OF THE PANEL COVERAGE

STREET NAME (INDICATE WHICH SIDE OF THE PROPERTY)

SAMPLE ROOF PLAN / SITE PLAN

SCALE: 1

PV-1
NOTE:
1. THIS IS ONLY A SAMPLE FOR THE MOUNTING. SHOW EXACT MOUNTING DETAIL AS APPLIES TO YOUR PROJECT.
2. ALL ITALIC FONT SHALL BE MODIFIED TO REFLECT ACTUAL PROJECT SPECIFIC DETAILS.
1. All plaques and signage required by the latest edition of California Electrical Code and the San Diego Area Electrical Newsletter, will be installed as required.

2. Alternate power source placard shall be metallic or plastic, engraved or machine printed letters in a contrasting color to the plaque. This plaque will be attached by pop rivets or screws, or other approved method. If exposed to sunlight, it shall be UV resistant.

3. Photovoltaic DC conductors entering the building shall be installed in metal conduit and the conduit shall be labeled, "Caution DC circuit" or equivalent every 10 ft.

4. Exposed non-current carrying metal parts of module frames, equipment, and conductor enclosures shall be grounded in accordance with 250.134 or 250.136 (A) regardless of voltage.

5. Each module shall be grounded using the supplied connection point identified on the module and the manufacturer's instructions.

6. If the existing grounding electrode system cannot be verified or is only metallic water piping, it is the contractor's responsibility to install a supplemental grounding electrode.

7. The inverter shall be listed as a utility interactive.

8. Unit installed on the same building as the modules but not on the roof.

9. The inverter output circuit conductors shall terminate within the service panel, in accordance with CEC 690.64(B)(7).

10. Backfeed breakers in the service panel shall be suitable for that use.

11. All equipment shall be installed in accordance with the manufacturer's approved installation instructions. A copy of these instructions is included as part of this plan.

12. All equipment and wiring shall be listed by National Recognized Testing Agency.

13. Use minimum 8 AWG equipment grounding conductor (EGC) when it is subject to physical damage, or install the EGC in an approved raceway.

14. All wiring shall be of copper material and kept outside of the building.

15. All electrical equipment including the service shall have a legible, visible, and durable marking indicating the manufacturer name, current, voltage, frequency, and number of phases.

16. Each installed equipment, wiring and overcurrent protective device (OCPD) shall have a short circuit rating not less than the available short circuit current at their input terminals.

17. The inverter shall comply with CEC 690.11.

SCOPE: Use this plan ONLY for electrical review of utility-interactive central string inverter systems not exceeding a combined system AC inverter output of 10kW on the roof of a single or duplex family dwelling or accessory building. The specific structural and fire requirements are covered under a separate permit. The photovoltaic system must interconnect to the load side of a single-phase AC service panel of 240Vac or less with a busbar rating of 225A or less. This plan is not intended for bipolar systems, hybrid systems or systems that utilize storage batteries, charge controllers, trackers, ac modules, more than two inverters or more than one DC combiner (non-inverter-integrated) per inverter. Systems must be in compliance with current California Building Standards Codes and all applicable STOCKTON Codes. Other Articles of the California Electrical Code (CEC) shall apply as specified in 690.3.

MANUFACTURER'S SPECIFICATION SHEETS MUST BE PROVIDED for proposed inverters, modules, combiner/junction boxes, racking systems, and rapid shutdown system or equipment installation Instructions for bonding and grounding equipment and rapid shutdown systems shall be provided, and local AHJs may require additional details. Listed and labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling (CEC 110.3). Equipment intended for use with PV system shall be listed for the PV application (CEC 690.4(B)).
1. ALL PLAQUES AND SIGNAGE REQUIRED BY THE LATEST EDITION OF CALIFORNIA ELECTRICAL CODE AND THE SAN DIEGO AREA ELECTRICAL NEWSLETTER, WILL BE INSTALLED AS REQUIRED.

2. ALTERNATE POWER SOURCE PLACARD SHALL BE METALLIC OR PLASTIC, ENGRAVED OR MACHINE PRINTED LETTERS IN A CONTRASTING COLOR TO THE PLAQUE. THE PLAQUE WILL BE ATTACHED BY POP RIVETS OR SCREWS OR OTHER APPROVED METHOD. IF EXPOSED TO SUNLIGHT, IT SHALL BE UV RESISTANCE.

3. PHOTOVOLTAIC DC CONDUCTORS ENTERING THE BUILDING SHALL BE INSTALLED IN METAL CONDUIT AND THE CONDUIT SHALL BE LABELED, "CAUTION DC CIRCUIT" OR EQUIVALENT EVERY 10 FT.

4. EXPOSED NON-CURRENT CARRYING METAL PARTS OF MODULE FRAMES, EQUIPMENT, AND CONDUCTOR ENCLOSURES SHALL BE GROUNDED IN ACCORDANCE WITH 250.134 OR 250.136 (A) REGARDLESS OF VOLTAGE.

5. EACH MODULE SHALL BE GROUNDED USING THE SUPPLIED CONNECTION POINT IDENTIFIED ON THE MODULE AND THE MANUFACTURER’S INSTRUCTIONS.

6. IF THE EXISTING GROUNDING ELECTRODE SYSTEM CAN NOT BE VERIFIED OR IS ONLY METALIC WATER PIPING, IT IS THE CONTRACTOR’S RESPONSIBILITY TO INSTALL A SUPPLEMENTAL GROUNDING ELECTRODE.

7. THE INVERTER SHALL BE LISTED AS A UTILITY INTERACTIVE UNIT INSTALLED ON THE SAME BUILDING AS THE MODULES BUT NOT ON THE ROOF.

8. THE INVERTER OUTPUT CIRCUIT CONDUCTORS SHALL TERMINATE WITHIN THE SERVICE PANEL IN ACCORDANCE WITH CEC 690.64(B)(7).

9. BACKFEED BREAKERS IN THE SERVICE PANEL SHALL BE SUITABLE FOR THAT USE.

10. THE INVERTER SHALL COMPLY ACCORDANCE WITH CEC 690.11.

General Notes

1. ALL PLACARDS AND SIGNAGE REQUIRED BY THE LATEST EDITION OF CALIFORNIA ELECTRICAL CODE AND THE SAN DIEGO AREA ELECTRICAL NEWSLETTER, WILL BE INSTALLED AS REQUIRED.

2. ALTERNATE POWER SOURCE PLACARD SHALL BE METALLIC OR PLASTIC, ENGRAVED OR MACHINE PRINTED LETTERS IN A CONTRASTING COLOR TO THE PLAQUE. THE PLAQUE WILL BE ATTACHED BY POP RIVETS OR SCREWS OR OTHER APPROVED METHOD. IF EXPOSED TO SUNLIGHT, IT SHALL BE UV RESISTANCE.

3. PHOTOVOLTAIC DC CONDUCTORS ENTERING THE BUILDING SHALL BE INSTALLED IN METAL CONDUIT AND THE CONDUIT SHALL BE LABELED, "CAUTION DC CIRCUIT" OR EQUIVALENT EVERY 10 FT.

4. EXPOSED NON-CURRENT CARRYING METAL PARTS OF MODULE FRAMES, EQUIPMENT, AND CONDUCTOR ENCLOSURES SHALL BE GROUNDED IN ACCORDANCE WITH 250.134 OR 250.136 (A) REGARDLESS OF VOLTAGE.

5. EACH MODULE SHALL BE GROUNDED USING THE SUPPLIED CONNECTION POINT IDENTIFIED ON THE MODULE AND THE MANUFACTURER’S INSTRUCTIONS.

6. IF THE EXISTING GROUNDING ELECTRODE SYSTEM CAN NOT BE VERIFIED OR IS ONLY METALIC WATER PIPING, IT IS THE CONTRACTOR’S RESPONSIBILITY TO INSTALL A SUPPLEMENTAL GROUNDING ELECTRODE.

7. THE INVERTER SHALL BE LISTED AS A UTILITY INTERACTIVE UNIT INSTALLED ON THE SAME BUILDING AS THE MODULES BUT NOT ON THE ROOF.

8. THE INVERTER OUTPUT CIRCUIT CONDUCTORS SHALL TERMINATE WITHIN THE SERVICE PANEL IN ACCORDANCE WITH CEC 690.64(B)(7).

9. BACKFEED BREAKERS IN THE SERVICE PANEL SHALL BE SUITABLE FOR THAT USE.

10. THE INVERTER SHALL COMPLY ACCORDANCE WITH CEC 690.11.

SCOPE: Use this plan ONLY for systems using utility-interactive Microinverters or AC Modules (ACM) not exceeding a combined system ac inverter output rating of 10 kVA on a roof of a one or two family dwelling or accessory structure. The photovoltaic system must interconnect to a single-phase or service panel of 120/240 Vac with service panel loadable rating of 250 A or less. This plan is not intended for bipolar systems, hybrid systems, or systems that utilize storage batteries, charge controllers, or tracker or more than 4 branch circuits. Systems must be in compliance with current California Building Standards Code and local amendments of the authority having jurisdiction (AHJ). Other articles of the California Electrical Code (CEC) shall apply as specified in section 690.3.

MANUFACTURER’S SPECIFICATION SHEETS MUST BE PROVIDED for proposed inverters, modules, combiner/junction boxes and racking systems. Installation instructions for grounding and bonding equipment shall be provided and local AHJ may require additional details. Listed and labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling (CEC 110.3). Equipment intended for use with PV system shall be identified and listed for the application (CEC 690.4D).
1. All plaques and signage required by the latest edition of California Electrical Code and the San Diego Area Electrical Newsletter, will be installed as required.

2. Alternate power source placard shall be metallic or plastic, engraved or machine printed letters in a contrasting color to the plaque. This plaque will be attached by pop rivets or screws or other approved method. If exposed to sunlight, it shall be UV resistant.

3. Photovoltaic DC conductors entering the building shall be installed in metal conduit and the conduit shall be labeled, "CAUTION DC CIRCUIT" or equivalent every 10 ft.

4. Exposed non-current carrying metal parts of module frames, equipments, and conductor enclosures shall be grounded in accordance with 250.134 or 250.136 (A) regardless of voltage.

5. Each module shall be grounded using the supplied connection point identified on the module and the manufacturer’s instructions.

6. If the existing grounding electrode system cannot be verified or is only metallic water piping, it is the contractor’s responsibility to install a supplemental grounding electrode system.

7. The inverter shall comply in accordance with CEC 800.11.

8. Unit interactive inverter shall be installed on the same building as the modules but not on the roof.

9. The inverter output circuit conductors shall terminate within the service panel in accordance with CEC 250.80(B).

10. Backfeed breakers in the service panel shall be suitable for that use.

General Notes

1. All plaques and signage required by the latest edition of California Electrical Code and the San Diego Area Electrical Newsletter, will be installed as required.

2. Alternate power source placard shall be metallic or plastic, engraved or machine printed letters in a contrasting color to the plaque. This plaque will be attached by pop rivets or screws or other approved method. If exposed to sunlight, it shall be UV resistant.

3. Photovoltaic DC conductors entering the building shall be installed in metal conduit and the conduit shall be labeled, "CAUTION DC CIRCUIT" or equivalent every 10 ft.

4. Exposed non-current carrying metal parts of module frames, equipments, and conductor enclosures shall be grounded in accordance with 250.134 or 250.136 (A) regardless of voltage.

5. Each module shall be grounded using the supplied connection point identified on the module and the manufacturer’s instructions.

6. If the existing grounding electrode system cannot be verified or is only metallic water piping, it is the contractor’s responsibility to install a supplemental grounding electrode system.

7. The inverter shall comply in accordance with CEC 800.11.
1. All plaques and signage required by the latest edition of California Electrical Code and the San Diego Area Electrical Newsletter, will be installed as required.

2. Alternate power source placard shall be metallic or plastic, engraved or machine printed letters in a contrasting color to the plaque. This plaque will be attached by pop rivets or screws or other approved method if exposed to sunlight. It shall be UV resistance.

3. Photovoltaic DC conductors entering the building shall be installed in metal conduit and the conduit shall be labeled "CAUTION DC CIRCUIT" or equivalent every 10 ft.

4. Exposed non-current carrying metal parts of module frames, equipments, and conductor enclosures shall be grounded in accordance with 250.134 or 250.136 (A) regardless of voltage.

5. Each module shall be grounded using the supplied connection point identified on the module and the manufacturer's instructions.

6. If the existing grounding electrode system cannot be verified or is only metallic water piping, it is the contractor's responsibility to install a supplemental grounding electrode.

7. The inverter shall comply with CEC 690.11.

8. Backfeed breakers in the service panel shall be suitable as such.

9. All equipment shall be installed in accordance with the manufacturer's approved installation instructions. A copy of these instructions are included as part of this plan.

10. All equipment and wiring shall be listed by National Recognized Testing Agency.

11. Use minimum 8 AWG equipment grounding conductor (EGC) when it is subject to physical damage, or install the EGC in an approved raceway.

12. All wiring shall be of copper material, and kept outside of the building.

13. All electrical equipment including the service shall have a legible, visible, and durable marking indicating the manufacturer name, current, voltage, frequency, and number of phases.

14. The inverter shall comply with CEC 690.11.

15. Each installed equipment, wiring and overcurrent protective device (OCPD) shall have a short circuit rating not less than the available short circuit current at their input terminals.

16. The inverter shall comply with CEC 690.11.

17. MANUFACTURER'S SPECIFICATION SHEETS MUST BE PROVIDED for proposed inverters, modules, combiner/junction boxes, racking systems, and rapid shutdown system or equipment. Installation instructions for bonding and grounding equipment and rapid shutdown systems shall be provided, and local AHUs may require additional details. Listed and labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling (CEC 110.3). Equipment Intended for use with PV system shall be listed for the PV application (CEC 690.4(B)).

SCOPE: Use this plan ONLY for electrical review of utility-interactive central/string inverter systems not exceeding a combined system AC inverter output of 10kW on the roof of a single or duplex family dwelling or accessory building. The specific structural and fire requirements are covered under a separate permit. The photovoltaic system must interconnect to the load side of a single-phase AC service panel of 240Vac or less with a busbar rating of 225A or less. This plan is not intended for bipolar systems, hybrid systems or systems that utilize storage batteries, charge controllers, trackers, ac modules, more than two inverters or more than one DC combiner (non-inverter-integrated) per inverter. Systems must be in compliance with current California Building Standards Codes and all applicable STOCKTOW Codes. Other Articles of the California Electrical Code (CEC) shall apply as specified in 690.3.
Emergency Escape and Rescue Opening Access

A 36 inch wide pathway shall be provided to the emergency escape and rescue opening.
Ridge Setbacks – <33% Total Roof Area

18” Setback from both sides of ridge above PV
"At least one pathway shall be provided on the street or driveway side of the roof."

For each roof plane with a photovoltaic array, at least one 36 in. wide pathway from lowest roof edge to ridge shall be provided on the same roof plane as the photovoltaic array, or on an adjacent roof plane, or straddling the same and adjacent roof planes.
SOLAR PV STANDARD PLAN - SIMPLIFIED

Central/String Inverter Systems for One and Two Family Dwellings

Central/Grid Inverter Systems for One and Two Family Dwellings

1. **Model Information**
 - **Model**: System description
 - **Application**: Residential, commercial, or industrial

2. **System SN**: System serial number

3. **Module Information**
 - **Module**: Module type
 - **Manufacturer**: Module manufacturer
 - **Model**: Module model
 - **Array**: Module array
 - **Watts**: Module power
 - **Volts**: Module voltage
 - **Current**: Module current
 - **Efficiency**: Module efficiency
 - **Temperature**: Module temperature

4. **Array Information**
 - **Array**: Array description
 - **System**: System description
 - **Configuration**: Array configuration
 - **Current**: Array current
 - **Voltage**: Array voltage
 - **Efficiency**: Array efficiency
 - **Temperature**: Array temperature

5. **Inverter Information**
 - **Inverter**: Inverter description
 - **Model**: Inverter model
 - **Manufacturer**: Inverter manufacturer
 - ** Watt**: Inverter wattage
 - **Volts**: Inverter voltage
 - **Current**: Inverter current
 - **Efficiency**: Inverter efficiency
 - **Temperature**: Inverter temperature

6. **Load Center Information**
 - **Load Center**: Load center description
 - **Model**: Load center model
 - **Manufacturer**: Load center manufacturer
 - **Watt**: Load center wattage
 - **Volts**: Load center voltage
 - **Current**: Load center current
 - **Efficiency**: Load center efficiency
 - **Temperature**: Load center temperature

7. **Conductor Information**
 - **Conductor**: Conductor description
 - **Type**: Conductor type
 - **Size**: Conductor size
 - **Length**: Conductor length
 - **Material**: Conductor material
 - **Temperature**: Conductor temperature

8. **Protection Information**
 - **Protection**: Protection description
 - **Type**: Protection type
 - **Rating**: Protection rating
 - **Manufacturer**: Protection manufacturer
 - **Watt**: Protection wattage
 - **Volts**: Protection voltage
 - **Current**: Protection current
 - **Efficiency**: Protection efficiency
 - **Temperature**: Protection temperature

9. **Other Information**
 - **Other**: Other description
 - **Model**: Other model
 - **Manufacturer**: Other manufacturer
 - **Watt**: Other wattage
 - **Volts**: Other voltage
 - **Current**: Other current
 - **Efficiency**: Other efficiency
 - **Temperature**: Other temperature

Conductor Information

- **Conductor Size**: AWG
- **Material**: Copper
- **Temperature**: 75°C
- **Rating**: Use in PV systems with DC/DC converters

Protection Information

- **Protection Rating**: OCPD
- **Manufacturer**: SolarEdge
- **Watt**: 15
- **Volts**: DC
- **Current**: OCPD
- **Efficiency**: 90%
- **Temperature**: 75°C

Conclusion

The PV system is compliant with the requirements as outlined in the SOLAR PV STANDARD PLAN.

Sample String Inverter Calculation

1. **Module Information**
 - **Model**: A120-4B
 - **Watt**: 120
 - **Volts**: 48
 - **Current**: 2.4

2. **Array Information**
 - **Array**: A120-4B
 - **System**: A120-4B
 - **Configuration**: A120-4B
 - **Current**: 2.4
 - **Voltage**: 48
 - **Efficiency**: 90%
 - **Temperature**: 75°C

3. **Inverter Information**
 - **Inverter**: A120-4B
 - **Model**: A120-4B
 - **Manufacturer**: SolarEdge
 - **Watt**: 120
 - **Volts**: 48
 - **Current**: 2.4
 - **Efficiency**: 90%
 - **Temperature**: 75°C

4. **Load Center Information**
 - **Load Center**: A120-4B
 - **Model**: A120-4B
 - **Manufacturer**: SolarEdge
 - **Watt**: 120
 - **Volts**: 48
 - **Current**: 2.4
 - **Efficiency**: 90%
 - **Temperature**: 75°C

5. **Conductor Information**
 - **Conductor**: A120-4B
 - **Type**: AWG
 - **Size**: 14
 - **Material**: Copper
 - **Temperature**: 75°C

Protection Information

- **Protection Rating**: OCPD
- **Manufacturer**: SolarEdge
- **Watt**: 15
- **Volts**: DC
- **Current**: OCPD
- **Efficiency**: 90%
- **Temperature**: 75°C

Conclusion

The PV system is compliant with the requirements as outlined in the SOLAR PV STANDARD PLAN.
Solar PV Microinverter/ACM Standard Plan - Comprehensive

Applicant and Site Information

11.2
1.1
110.3). Equipment intended for use with PV system shall be identified and listed for the application {CEC 690.4(D}}.

3.2
1 General Requirements and System Information

SCOPE: Use this plan ONLY for systems using utility-Interactive Microinverters or AC Modules (ACM) not exceeding a combined system nominal ac Voltage Rating: _____ Volts

Module Voe at STC (from module nameplate): ____ Volts

Minimum #8 AWG copper per article 250.166. The de GEC from the inverter terminal to the existing grounding electrode system is a correction factor for ambient temperatures below 25 °C. See Table 690.7.

Per Section CEC 690.54, ground conductors must be identified per 210.5(C). White-finished conductors are not permitted.

Maximum de Input Current Rating: ____ Amps

Nominal Operating ac Voltage (STEP 2.2] _____ Volts

Photovoltaic system:

Minimum #8 AWG copper per article 250.166. The de GEC from the inverter terminal to the existing grounding electrode system is a correction factor for ambient temperatures below 25 °C. See Table 690.7.

Per Section CEC 690.54, ground conductors must be identified per 210.5(C). White-finished conductors are not permitted.

Minimum #8 AWG copper per article 250.166. The de GEC from the inverter terminal to the existing grounding electrode system is a correction factor for ambient temperatures below 25 °C. See Table 690.7.

Per Section CEC 690.54, ground conductors must be identified per 210.5(C). White-finished conductors are not permitted.

Maximum Combined Inverter OCPD with 120% of busbar rating (Amps} 20

Voe temperature coefficient (P) = ____ %/

If module manufacturer provides a voltage temperature coefficient from (STEP 4.2]), use the formula below and calculate in Method 1:

Voe = Voe[1 + P x (T - 25)]

If Voe temperature coefficient is not provided by the module manufacturer, use the calculation in Method 2. If installing ACMs, skip to ISTEP 6)

Verify the Low Temperature Voe is less than the Microinverter maximum input voltage from (STEP 2.4)}: □

If No to the statement above, the sum of OCPD(s) supplying the panel cannot exceed 100% of the bus circle 100% as the multiplier in calculation. Otherwise, circle 120% and use that as the multiplier.

For Microinverters with a grounded de Input, systems must follow the requirements of GEC (CEC 690.47) and EGC (CEC 690.43).

Microinverter or ACM Information and Ratings

Microinverters or ACMs to be used in the system (s) must comply with the following standards (s):

1. Minimum Operating Ambient Temperature: _____ °C

2. Maximum Operating Ambient Temperature: _____ °C

3. Maximum Ambient Humidity: _____%

4. If testing IEC 61724, description of test method: _____ Volts

5. Maximum de Input Rating: _____ Watts

6. Module Manufacturer: ____________________

7. Module Manufacturer: ____________________

PV Module Information

Module Manufacturer: ____________________

PV-5B August 25, 2020

Branch and Combined Inverter Output Circuit Information and Calculations

Calculate the current supplied by the system using Method 1 (STEP 7.2) for each Branch and the Combined Inverter Output Circuit. Enter the results in [Table 2].

For M40B wires, see Table 690.7.

The correction factors for each raceway:

Each Raceway height above the roof: _____ Inches (If not applicable Indicate N/A)

Minimum Conductor Size, AWG

Table 2 Calculated Branch and Combined Inverter Output Circuit OCPD Size

<table>
<thead>
<tr>
<th>Branch Circuit</th>
<th>OCPD Size</th>
<th>Circuit Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Branch Circuit</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>2nd Branch Circuit</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>3rd Branch Circuit</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>4th Branch Circuit</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>Combined Inverter Output Circuit</td>
<td>_____</td>
<td>_____</td>
</tr>
</tbody>
</table>

Branch and Combined Inverter Output Circuit Conductors

Use the inverter output OCPD calculated above. Where the figure is between two standard values of conductor size, use the smaller size conductor. The CTEC's long life may not necessitate a larger conductor size for the inverter output.